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I. Introduction

As we enter the second decade of the AIDS pandemic, we see a sharp
increase in HIV seroprevalance in the developing countries of
Africa, Latin American, and Asia, with no clear indication of
decline in the developed countries. As a result, large increases
in AIDS cases and related mortality are expected in the next
decade, particularly in the developing countries. As yet, there
is no effective treatment or vaccine for AIDS, although the
reverse transcriptase inhibitors such as AZT and ddI have been
shown to prolong life in some patients and a number of candidate
drugs and vaccines are poised to go into clinical trials.
Continued efforts to identify new strategies and targets and to
refine those being developed are critically needed, since a "magic
bullet" is not likely to be found in the battery of candidate
drugs and vaccines already available. -Furthermore, a combination
treatment regiment using multiple drugs may be indicated to
counter the problems of toxicity and resistance.

In theory, inhibition of HIV-l replication should be achievable by
interfering with various key steps in the virus life cycle,
including virus entry, reverse transcription, transcription,
transactivation, translation, packaging, or release of virus
particles. Although we initially focused on generating
transdominant mutants of rey and p genes, slow or
unsatisfactory outcomes of these efforts stimulated to explore
additional avenues for gene therapy against HIV. The diverse
approaches that have been taken include antisense and ribozyme
technologies. Both approaches target the same step in the HIV-l
viral life cycle, the utilization of viral mRNA (reviewed in Ref.
1). Conventional antisense RNAs and DNAs have been shown to
impair gene expression and may have utility as antiviral and
anticancer agents.

One important theme to emerge from the study of HIV regulation is
the importance of RNA-Protein interactions, not only between Tat
and Rev and their respective targets, TAR and RRE, but also TAR
and RRE binding proteins as well as Tat and Rev binding proteins.
These components form large functional complexes, the disruption
of which would halt virus production. The use of RNA decoys,
transdominant mutant proteins and anti-sense/catalytic RNAs all
aim at interfering such complex formation. We have utilized
antisense to RRE as a means to inhibit Rev function, and a hairpin
ribozyme targeting the leader sequence to cleave HIV mRNAs,
including tat and zre mRNA.
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Our objectives are as follows:

1. To drive optimal antisense oligonucleotides against HIV-I RRE
that will inhibit Rev-RRE and NFRE-RRE interactions, as well
as HIV replication.

2. To design and construct ribozymes targeting conserved
sequences of HIV-l RNA.

3. To evaluate the capacity of the ribozymes to inhibit
replication of HIV in transient transfection systems.

4. To insert ribozymes in amphotropic murine retrovirus vector
and optimize expression in human T-cells using different
internal promoters.

5. To transduce PBL cells or neoplastic T-cell lines with
retrovirus expressing the ribozymes to determine if
uninfected cells could be protected from de novo infection
and if chronically infected cells would be repressed in virus
production.

6. To determine if SCID-Hu mice treated with antisense
oligonucleotides or reconstituted with human PBL transduced
by ribozyme-expressing retrovirus vector would be refractory
to HIV infection and/or virus induced CD4 cell depletion.

We have made good progress on specific aims 1-3 and will extend
into specific aims 4-6 in the coming year.
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II. Progress

A. Inhibition of HIV-1 bv antisense Olioonueleotides
directed against Rev Responsive Element MRREI.

Structural and genomic RNA transcripts of the human
immunodeficiency virus contain a highly structured motif
known as the Rev-responsive element (RRE). The viral Rev
protein and a cellular nuclear factor, NFrre, bind
specifically to RRE RNA, positively regulating expression of
Env, Gag, and Pol proteins (2). This unique regulatory
scheme represents an attractive target for inhibition of
viral expression. We examined various antisense
oligonucleotides (ODN) directed against the RRE for their
ability to bind stably to RRE, to abolish or reduce the
binding of Rev and NFrre proteins, and to inhibit the
expression of HIV-l p24 in HIV transfected cells.

Sequence optimization of Antisense Oligonucleotides
that binds RRE. Phosphodiester and phosphorothioates
targeted to the HIV-1 RRE were designed (Figure 1A) to target
the stem 1 and stem loop 2 region of RRE, which encompasses
the Rev and NFRRE binding sites. These oligomers were
designed to go over the bulge of the stem 1 (i.e., aRREl),
to cover half the stem loop 2 (aRRE2, aRRE, aRRE4). This
approach has been shown to disrupt the secondary structure of
some mRNA messages (3). Internally labeled RRE was
transcribed in vitro from T7 promoter driven vector.
Unlabeled oligonucleotides were added either at the time of
addition of ribonucleotide or well after transcription was
completed. Oiigonucleotides which disrupt the secondary
structure of the stably-folded RRE RNA were expected to bind
whether added before or after transcription, while those
incapable of disrupting the structure of folded messages were
expected to bind only when added at the time of
transcription. Gel shift experiments showed that
oligonucleotides aRREI, aRRE2, and aRRE3 regions could bind
with specificity regardless of whether the RNA was first
allowed to fold (Figure IB). However, only antisense ODN
which included regions which hybridized with at least half of
the unpaired bases in loops or bulges of the RRE showed
binding to prefolded RNA structure (data not shown). The
binding of aRREl was most strikkng, and subsequent
experiments were focused on this oligonucleotide.

To optimize the sequence for RRE binding, we designed a
series of 24-mer ODN's lA-F (Figure 2A), staggering three-
base steps towards the 5'-end of RRE RNA. As seen in Figure
2B, moving the ODN target as little as 6 bases toward the 5'-
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end of RRE RNA. As seen in Figure 2B, moving the ODN target
as little as 6 bases towarca the 5' end of the RRE reduced the
degree of binding by 2-3 fold. Titration experiments showed
that 50% of RRE RNA was found (shifted) at an oligonucleotide
concentration between 0.3 pmole and 1.0 pmole (data not
shown), corresponding to approximately 1 copy of oligomer for
every 1.5-2 copies of RRE RNA.

Antisense ODN rendered RRE RNase H sensitive.
The efficiency of oligonucleotide in inhibition of mRNA
translation may largely dependent on the cleavage of
mRNA:oligonucleotide hybrid by endogenous ribonuclease-H
(RNase-H) (4). RNase-H recognizes DNA:RNA hybrid and cleaves
only the RNA strand. We examined if aRREl is able to induce
RNase-H cleavage of RRE. Both the phosphorothioate and
normal aRREl lead to the degradation of the transcript as
shown in Figure 3, lanes 3 and 4. Therefore it does induce
RNAse H Activity. However, phosphorothioate aRRE2 did not
induce the RNAse-H activity. The observation may partly be
due to the inability of modified aRRE2 to bind the RRE RNA
under these experimental conditions. It has been previously
shown that modification of ODN reduce their binding ability
(5).

Effect OF aRREI on Rev and NFRRE Binding.
Given that the specific interaction of Rev and RRE is
critical in the HIV replication cycle, it was important to
study the effect of aRRE1 on Rev-RRE interaction. The
addition of a RRE1 induced a shift of the RRE probe (Figure
4A, lane 5) and completely inhibited Rev binding (lane 6).
The addition of other antisense oligomers or mutated control
oligomers had no effect, implying the binding and inhibition
was specific to aRREl. Prediction of the structure of RRE
bound to aRREl suggests that this may be due to extensive
perturbation of RRE steml structure. Degradation of the
probe in lane 6 could be due to contaminating RNAse-H
activity in the Rev protein preparation.

NF:RRE is a 50-55 Kd cellular protein which binds specifically
to RRE RNA and Rev as a complex (6). Recent data in our
laboratory suggest that NFRRE plays a positive role in Rev
transactivation (Y.N. Vaishnav, et al., unpublished). As
shown in Figure 4B, binding of the NFRRE was substantially
reduced in the presence of aRREl (lane 6).

In vitro Antiviral Activity of aRRE2 S-ODN.
in order to determine sequence splecific antiviral activity of
antisense ODN, we utilized a system where virus expression
independent of early infection events Was monitored. Hela-
LTR-LacZ "Magic" cells were transfected with the HXB2 genomic
DNA followed by ODN. The inhibition of expression of HIV-1
n24 was used to determine the effectiveness of the ODNs as as
inhibitors of HIV-I replication and expression. As seen in
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Figure 5, both S-aRREl and S-aRRE2 were capable of
significant inhibition (84-95%) of HIV-1 expression in a dose
dependent fashir.i (even at concentrations as low as 2.5 JiM)

B. Inhibition of HIV Replication by a Mairjin Ribozvma

Ribozymes are RNAs that possess the dual properties of RNA
sequence-specific recognition analogous to conventional anti-
sense molecules, and RNA substrate destruction via site-
specific c~eavage. The cleavage reaction is catalytic in
that more than one substrate molecule is processed per
ribozyme molecule. We have designed a hairpin ribozyme that
cleaves HIV-1 RNA in the leader sequence (at nucleotide
+111/112 relative to the transcription initiation site).
The ribozyme was tested for in vitro cleavage of target RNA,
and for antiviral efficacy in vivo. The results suggest that
this HIV-l. directed hairpin ribozyme may be useful as a
therapeutic agent.

Specific cleavage of HIV-l RNA by hairpin ribozyme in
vitro. A hairpin ribozyme was engineered to cleave a site
in the 5' LTR of the HXB2 clone of HIV-1 (Figure 6A). The
target sequence UGCC C*GUC UGUUGUGU (with cleavage occurring
at the*) is highly conserved among all HIV-1 isolates. The
hairpin ribozyme was engineered such that it could base pair
to the two sequences flanking the C*GUC to form helices 1 and
2 (Figure 6B). Heliz 2 is fixed in length at four bases by
the functional requirements of the hairpin ribozyme, however
the length of helix 1 could be varied. The length of helix 1
which provided optimal catalytic activity was experimentally
determined to be 8 nt (Hampel, unpublished observation).

In vitro this ribozyme cleaved the target substrate with
efficiency as determine by its kinetic parameters (not
shown). Un*i. very mild reaction conditions (370, pH 7.5,
12mM MgC12, 40mM Tris and 2 mM spermidine), the kinetic
constants were as follows: Km-100 nM and Kcat-1.6/min. This
gives an enzyme efficiency of Kcat/Km = 0.016 nM-lmin-1 as
compared to 0.07 for the original native hairpin ribozyme
(7). The catalytic efficiency, relative to the original
tobacco ringspot ribozyme, is therefore 23%. A disabled
ribozyme was prepared with the same sequence as Figure lB
except nucleotides 22-AAA-24 (Figure 6C) were changed to 22-
CGU-24 (Figure 6D). Although, this RNA still binds to the
target sequence, no catalytic activity could be detected in
vitro (data not shown). I"

Effects of Ribozyme on IV-I. Expression in a Transient
Assay. The practical application of ribozymes as
therapeutic agents in vivo will depend on their ability to
function in a complex cellular environment. This requires
stable expression of the ribozyme in the cell, specificity
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for the target RNA, accessibility of mRNA targets for
cleavage and lack of cytotoxicity of the endogenously
expressed ribozyme. To address these issues, the sequences
containing the HIV directed ribozyme and its disabled
counterpart were cloned into mammalian expression vectors
under the control of the human 3-actin promoter and the
PolIII promoters for tRNAvaj and adenovirus VAI (Figure 7).
The resultant plasmid DNAs were used in transfection
experiments in HeLa cells. The pHXB2gpt plasmid and an LTR-
CAT plasmid were co-transfected. In this assay, the pHXB2gpt
plasmid provides the target mRNA which is translated into
viral proteins, including Tat. Tat protein in turn
transactivates the CAT-linked LTR promoter (pCl5-CAT) (Figure
8). Ribozyme activity is measured by the level of reduction
of tat transactivation and gag expression. As shown in
Figure 8, the expression of HIV-l ribozyme in this transient
assay inhibited HIV-I expression and virus production
significantly (-70-90%) . As a control, tat-expressing
plasmid which lacks the target sequence was not inhibited by
the ribozymes. In addition, the disabled ribosomes did not
inhibit CAT activity or gag expression (not shown),
suggesting that the wildtype ribozymes functioned
catalytically, and not as antisense molecules.
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Ill. conclusions

As indicated in the first annual report, we had planned to
diversify our gene therapy approach against HIV. In this
report, we present encouraging data on utilizing two novel
approaches in inhibiting HIV replication: (a) we showed that
antisense deoxynucleotides targeting the RRE sequence can
disrupt binding of RRE to Rev and the cellular factor, NFaRE,
and inhibit HIV expression in a sequence specific manner.
(b) a hairpin ribozyme targeting the leader sequence of HIV-1
inhibits HIV expression in a manner which is dependent on
presence of target sequence and-a catalytically active RNA.
Our current aims are to (i) optimize the delivery and dosage
of the antisense ODN for PBL's and additional HIV isolates.
(ii) optimally expression the ribozyme in a retrovirus
vector; and (iii) to evaluate these approaches in the SCID-Hu
PBL mouse model.
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V. FIGURE LEGENDS

Figure 1. Design of antisense ODN directed against the HTV-I
Rev responsive element (RRE).

(A) The minimum energy predicted secondary structure of RRE and
designed antisense oligomers directed against different portions
of the RRE RNA (sequences given in the box).
(B) The binding of anti-RRE oligomers to internally labeled RRE
RNA: RRE RNA only (lane 1) RRE RNA + aRREl (lane 2), RRE RNA +
aRRE2 (lane 3), RRE RNA - aRRE3 (lane 4), RRE RNA + aRRE4 (lane
5), RRE RNA - aRRE5 (lane 6), and RRE RNA + maRRE1=mRREl~mutant
form of aRREl] (lane 7).

Figure 2. Seauence Optimization of aRREI.

(A) Three-base step walk towards the 5'-end of RRE RNA starting
with aRREl 0DN, complementary to bases 7378-7402 (24 nucleotides)
and ending with aRREiF ODN complementary to bases 7359-7383. The
mRREI is a mismatched ODN corresponding to aRRE1 used as control.
These are all phosphodiester oligonucleotides. (B) Binding of
stem loop I ODNs to RRE RNA: RRE RNA only (lane 1), RRE RNA =
aRREl (lanes 2 and 3), RRE RNA + aRRElA (lane 4), RRE RNA + aRREiB
(lane 5), RRE RNA + aRREiC (lane 6), RRE RNA +aRRE1D (lane 7),
RRE RNA + aRRElE (lane 8) and RRE RNA + aRREiF (lane 9). M
represents multimer forms of RRE RNA.

Figure 3.Sensitivity of RRE-ODN to RNase-H.

One unit of RNase-H was added to prehybridized mixture of RRE RNA
(0.3 pmoles) and normal and/or phosphorothioate deoxyoligomers (10
pmoles) in final volume of 10 ml and incubated at 37*C for 2
hours.

Figure 4. Effects of aRREI ODN Rev-RRE and NFg,
Interactions.

Binding of labeled RRE to (A) the Rev protein and (B) NFRRE was
carried out according previously described conditions (6).

Figure 5. Antiviral activity of anti.-RRE Rhosphorothioates
oligonucleotides.

Hela CD4 cells were first transfected with the pHXB2 DNA, and
after three hours, with the phosphorothioated ODN.
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Figure 6. o . . .
(A) The sequence and location of the target site in the HIV-I
genome. Cleavage occurs at the arrow between nucleotides +
111/112 relative to the transcription initiation site (EIV_-HXF 2 )
The 16 base target site is found in the leader of all known HXB2
mRNA species.
(B) The hairpin ribozyme used to cleave the HIV-3. substrate RUA.
Substrate RNA (SHIV) has the target sequence shown plus additional
gcg sequence at it 5'end. Hairpin catalytic MJA (RHIV) having the
"hairpin" catalytic motif is designed as shown. It also has
additional vector sequence shown in lower case letters.(C) Wild-type (from plasmid pS-dHR) and disabled ribozyme
(D) The 5' cap site and 3' terminus with 2', 3' cycic phosphateare depicted.

Figure 7. r f
The ribozyme was expressed from both polI (1 -actin) and pol111(tRNAval and VAI) promoters.
F igu re 8 . . _ . i t

The expression of this plasmid in cells provides the ribozyme
target. The effector plasmid (pHXB2gt) and a reporter plasmid
(pC15CAT) were co-transfected into teLa cells with riv-1 5, leader
sequence-specific reibozyme containing plasmids (pw-hR, pJT-HR,
pJV-HR) by calcium phosphate method in a molar ratios of 1:5 or
1:10 (effector plasmid:ribozyme plasmid). The control consistedof HeLa cells transfected with pRXB2gpt, pC15CAT and pHBApr-1
vector lacking the ribozyme sequences. pTat is a tat-expressingplasmid driven by the SV40 late promoter and lacks the ribozyme
target sequence. After 48 hours the cells were harvested and the
supernatant was subjected to p24 antigen analysis, or the cell
lysate subjected to CAT enzyme assay. The experiments were
repeated three or more times and both values were represented asrelative percentages.
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Figure 2A

7402 7378
ciRRE I 5'-GCT TCC TGC TGC TCC CAA GAA CCC -3'

IA S'-TCC TGC TGC TCC CAA GAA CCC AAG-3'
lB S'-TGC TGC TCC CAA GAA CCC AAG GAA-3'
iC 5'-TGC TCC CAA GAA CCC AAG GAA CAA-3'
ID 5'-TCC CAA GAA CCC AAG GAA CAA AGC-3'
lE S'-CAA GAA CCC AAG GAA CAA AGC TCC-3'
IF 5'-GAA CCC AAG GAA CAA AGC TCC TAT-3'

MaRRE I 5'-ATT CTC TAT GAT TTC TGG AGG TTT G-3Y
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Figure 3
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Figure 5

Inhibition of p24 Antigen Expression
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Figure 6A
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Figure 6B

HIV Catalytic RNA /Substrate RNA Complex
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Figure 6C
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FIGURE 7
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